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S T E A D Y  T H E R M O M A G N E T O H Y D R O D Y N A M I C  F L O W S  O F  A 

C O N D U C T I N G  G A S  IN S T R O N G  M A G N E T I C  F I E L D S  W I T H  

A L L O W A N C E  F O R  T H E  H A L L  E F F E C T  

I. V. Krasnoslobodtsev UDC 537.84 

This article examines slow steady flows of a conducting gas in an arbitrary region when the magnetic forces and the 

pressure gradient in the main part of the flow are an order of magnitude greater than the inertial forces and viscous stresses 
and Ohm's law is written in its most general form with allowance for heat flow and the Hall effect. We will assume that we 

can ignore the distortion of the magnetic field of the moving medium. The flows to be studied have a high value of the MHD 

interaction parameter, a high Hartmann number, and a low magnetic Reynolds number. 
The main equations which describe the motions of a conducting medium under the given conditions have the following 

form: 
the continuity equation 

divpv = 0; (1) 

the equation of magnetic statics 

1 
grad p = - (j x H); (2) 

C 

the generalized Ohm's law in the presence of heat flows 

V 
j = cr(grad~o + - x  H -  agradT)  - 7 ( j  x H) + x(j x H) x H; 

C 

(3) 

the law of charge conservation 

air j = 0; (4) 

the energy equation 

dr / (5) 
pc[~ t = kAT - pdiv v + ~; 

the equation of state 

p = pfp,T). (6) 

Here, p is the density of the medium; u is electrical conductivity; v is velocity; p is pressure; c is the speed of light; j is current 

density; H is the strength of the magnetic field; ~o is electric potential; k is thermal conductivity; c v is isobaric heat capacity; 
T is temperature; ta is the thermo-emf coefficient; the coefficients -y and x are determined by the physical properties and state 

parameters of the gas. The conditions under which we can ignore the induced magnetic field, viscous forces, and inertial forces 
in the equations of motion are given by the inequalities 
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I ' ~ / - ~ H L  
H : ~ - j L ,  V ~ c ::)" 1,p~',ag: p, 

where M is the Hartmann number; /~ is viscosity; H, j, L, p, p, and v are the magnetic field, current density, a linear 
dimension, the density of the medium, pressure, and velocity. 

The magnetic field will be assumed to be a potential field and will be determined by the assigned external sources H 

= grad a (where a is a known function satisfying the equation ha = 0). We use Eq. (2) to f'md the component of current 

density perpendicular to the magnetic field [1] 

cH (7)  
j~ = ~-~ • grad p. 

Here, pressure is a function which is constant on each magnetic line of force. 

Following [1], we determine the component of current density in the direction of the magnetic field from Eq. (4) in 
the form 

jl = H (H x grad H-2)grad pda + AH (8) 

(A is an arbitrary function which remains constant along the magnetic lines of force). 

We f'md from Eq. (3) that 

o( o - , 73 = c f f  H-2(H • grad H-2)grad pda + Aa + B (9) 

(B is another arbitrary function which is constant on each magnetic line of force). 

We fred the component of velocity perpendicular to the magnetic field from Eq. (3) with allowance for Eq. (7): 

v ~ = (  
c 2 c 2 c H  r 

oH 2 a ~)grad p - ~ x grad(T - a T  - y ~ p ) .  
(10) 

We use Eq. (1) to calculate the velocity component in the direction of the magnetic field: 

= f n r o t  x grad(~o - a T  - y_p)daC + ui I 

- ' ~  + -~H2n pApda + 7 f (~H 2 + • grad p grad H-2da + (11) 

~ + o/.7~ grad p grad p da + ~ C  

(C is an arbitrary function that is constant on each magnetic line of force). 

We now derive the equations of motion in the boundary layer with allowance for the Hall effect and heat flow. Along 

with the electromagnetic forces, thermal effects, the anisotropy of conductivity, and the pressure gradient, we will consider 

viscosity in the boundary layer. As before, inertial forces will be ignored. We will classify a boundary layer of the given type 
as a Hartmann layer. 

The equations, describing the flow in the boundary layer take the form 

a2v = grad (p + nH2p) + a__H x grad(~) - a T  - c w )  + 
u an 2 r 

(12) o H  2 a ~2 r 1 aV 
v - 7 H ( H v ) , - - ( ~ o  - a T  - "ffpy) - -~(H • -'~.) = 0 

C2 On 2 
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(n is the distance reckoned along a normal to the wall). 

The first equation of  system (12) was obtained by substituting Ohm's law into the momentum equation, while the 

second is the continuity equation for the electric current. We assume that the velocity component normal to the surface in the 

boundary layer is equal to zero and that the tangential components of the gradients of  potential, temperature, and pressure 

coincide with their values in the core of  the flow. 

We introduce the notation: 

U = V - - V o , ~ = ~ o  - , p o ,  Q =  T -  To ,  P = p - p o, 

where v 0, r To, and P0 are velocity, potential, temperature, and pressure in the flow core. Having integrated the second 

equation of (12) over the thickness of the boundary layer, we f'md 

c 1 (13) 
a,,'--c aa - a Q  - ~ p )  = 7 ( H  x u )  n- 

Taking Eqs. (12) and (13) into account, we obtain the following equation for u 

~ grad(l + • + ~ H ] u  - o (14) /t On-- 7 = c f f  H(Hu)n, 

where n is a vector normal to the surface. 

Since u n = 0, then by projecting Eq. (14) on the normal to the surface we obtain the equality 

a 
(1 + >tH~)aPa,, = ffH (Hu). 

(15) 

Projection of Eq. (14) on a plane tangent to the wall gives us the relation 

O2U - ~ H 2 u .  (16) 
,U On 2 -~- C ~ n 

Equation (16) agrees completely with the equation for a Hartmann layer obtained in [1] without allowance for heat flow 

and the Hall effect. Thus, using these results, we can write the boundary conditions for the flow core: 

on the nonconducting wall 

sign/-/" ~ ( r o t  v)n + .~ = 0 (17) 

for the electrode 

C . C . 

~o - -  a T -  } , ~ p  = ~o - a T *  - y ~ p  . (18) 

Here, ~o*, T*, and p* are potential, temperature, and pressure on the surface of the electrode. 

As a simple example, we will examine a flow of gas in a circular tube of constant cross section. The streamlines are 
rectilinear at high Hartmann numbers. 

We assign a constant external magnetic field H = Hoe z (H o = const) in the yz plane perpendicular to the direction 

of flow along the Ox axis. In this case, we write the general solution of (9-11) in the form 

o(9, - aT) = A(y)z + B(y), 

v = - + • ax ~ l o y ( ~ ~  (19) 

u 0,~ o, QO _op ---- = - -  c o n s t .  
a x  
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We will assume that the process is isothermal, since T = T* = const, while the boundaries of the tube, given by the equations 

z = 4- ~r - y2, are electrodes with the potentials ~Pl = COnst, ~P2 = const. We fred from the condition Vy = 0 that the 

pressure distribution in the given case satisfies the relation 

p = ~ x +  Q~ p0 1 + H2),rr y + p 0 ,  = c o n s t .  

We use system (19) to find the distribution of potential 

o'~p = 2 ~  + 2 

Knowing the potential, temperature, and pressure, we determine the velocity of the flow in the tube v x. We similarly solve 

the given problem in the case when the walls of the tube are nonconducting and the case when one wall is an electrode and 

the other wall an insulator. 

Let us examine the flow of a conducting medium when H = H0e z, where H o = const and e z is a unit vector on the 

z axis of the cartesian coordinate system. Let the boundaries of the region be given by the equations z = + f(x, y). Considering 

the symmetry of the problem relative to the plane z = 0 and examining processes for which p = p(x, y), ,p = ~o(x, y, (p = 

p(x, y), T = T(x, y), we can use Eqs. (7-8), (10-11) to obtain the system 

C C 
-~ = --HPy , Jy = ~P , , J z  = 0, ( :  :) c( c) (:  :) 

V = -- oH 2 -- ~ Px + "-H 9 9 -- a T - -  y'~p u = aH 2 y~ l ~ X 

C C C2 r 
12 - H(  ~o -- a T  - ~oP) x' ~ = oH ' '--~Apz + o"~ "r + 

C r C 

, : :  
+ ~-gradpgrad [~H-7 + ~ z. 

(20) 

We designate the partial derivatives as Px = 3p/3x, etc. In this case, we write the hydrodynamic boundary condition expressing 

the impermeability of  the boundaries v n = 0 in the form 

( , .  - , . j .  - ./,)I.-/c..~ = o .  

We designate 0 = ~o - o~T - ,y(c/a)p. Then having inserted the equations of system (20) into the boundary condition, we 

obtain the relation 

+ (o :, o px) + o-'x lap+ "~HZ + o---x p, -- -~Oy L + -~ + o'~,e p, + H : /j, + -- -- 

+ ~  f g r a d p g r a d p - -  O. 

(21) 

If the boundaries of  the region z = +f(x ,  y) are insulators, then after inserting Eqs. (20) into Eq.(17) we obtain 

1 c i~ 1 
~ gradp  grad p ( ' ~  + - ~ l f  ) - ~ x ( ' ~ ( ' P ,  - OyPx)ff ,  + 

196 ~ -  + aPG + ~" grad p grad p ~ -  + / = . 

(22) 



We will assume that the parameter x < 1/H 2. Then taking Eqs. (21) and (22) and discarding terms of the order 1/M relative 

to the other terms, we obtain 

1 1 ~-(o p ,  - o p , )  + 7 ( e ,  I ,  - ~,, L )  = o ,  o = o c o / ) ,  

a 1 = 
(23) 

The estimates made in the construction of system (23) correspond to removal of the terms containing pressure from the 

expressions for the components of velocity. In this case, the expressions for the velocity components taken the form 

C C C 
,, = ~ o, ~ = - ~  o, o, = ~ (op, - e p,). (24) 

It follows from the above results that for flows of gas in strong magnetic fields, the conditions under which the Hall effect can 

be ignored for any boundary conditions are 

1 or 

y c  

Let us examine the flow of a conducting gas p = P(O, T) in a region bounded by nonconducting walls z = + f(r) (r 
= 4-x 2 + y2). The region also contains electrodes with assigned constant potentials ~o1" and ~'z* (~1" # ~~ constant 

temperatures TI* and T2* (TI* # Tz*), and constant pressures Pl* and P2* (Pl = P2*) on the surface of the electrodes. The 
electrodes are cylinders with generatrices parallel to the z axis and directrices fl = const, t'2 = const, fl ;~ f2- 

We will assume that a constant temperature and pressure is maintained in the regions between the electrodes and 

insulators. Also, as was shown in [2], in this case we have the equality 

~ ' ( . 0  = O, ~o(/') = const ,  

from which we find that 0'(f) = 0, 0(f) = const, i.e., gas velocity is zero in this region. Thus, motion of the gas will take place 
only in the region between the two electrodes, i.e., the geometric structure of the flow will be planar and, accordingly, v z = 

cz/pH(0xPy - 0yPx leave) in = 0: 

o p ,  - o p ,  = 0,  o = o q , ) .  (25) 

Condition (25) is equivalent to the equality 

O]o C 
d-; = ~C~ - p  o) = o.  

With allowance for Eqs. (23), we have 

o = o ( / ) ,  p = p ( / ) .  

Let us examine barotropic processes p = P(O) = P(f). 

System (23) then reduces to the form 

O = O(f) ,  f = f ( r ) ,  AO = O, 

from which we obtain 
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1 
0 = Rl ln  ~ + R2 , 

where the constants R t and R 2 are found from the boundary conditions 

o(:,) p; ,~:r;- r  = -- YoPt = cons t ,  

o( /2)  ~ ;  - . r ;  - r �9 = )'~vP2 = cons t .  

Since p = p(f), T = T(f), ,p = ~o(f), and p = p(f), the streamlines f = const are simultaneously isochores, isotherms, isobars, 

and lines of equal potential. Knowing the function 0 = 0(f), we can use Eq. (24) to find the velocity of  the gas. 

Generalizing the results we have obtained, we can state the following as regards thermomagnetohydrodynamic flows 

of gas in strong magnetic fields with allowance for the Hall effect in the case when the flow is bounded by nonconducting walls 

z = +f(x ,  y). 

1. For the parameters x < 1/H 2, plane flows of a conducting gas occur along the lines f = const and are determined 

by the stream function 

r 
0 = o(f)  = ~ - a T  - rSP.  

2. The density of  the gas is constant along the lines 

/ = cons t ,  i.e. p = p ( f ) .  

3. The distribution of  density satisfies the equation 

dp 
0 .  

dt  

Let us consider th~ case of a variable potential magnetic field H = grad a and wails of  arbitrary form. Following [2], 

we introduce the curvilinear coordinate system x, y, a, with basis vectors e l ,  e 2, e 3 such that the coordinate lines x and y are 

orthogonal to the lines a. Lines a coincide with the magnetic lines of force. 

The metric is determined by the components gij of the metric tensor 

D 
ds 2 = gud.d + 2gudxdy + g,,dy 2 + -t~da2, 

--o (26) 
D = gt igz2 - ~ 2 '  Ho = const. 

Using the last equality of  Eqs. (26) and taking into account the potential nature of  the nature of  the magnetic field H = grad 

a, we see that H 4 D  = H 0. We write the equations of the nonconducting wails in the form a = Ho f+(x,  y), a = H0f(x,  y). 

As in the above-examined case H = const, we ignore the terms containing pressure in the expressions for the velocity 

components. We will henceforth consider the case when ~ = ~,(x, y), p = p(x, y), T = T(x, y). The expression for velocity 

takes the form 

Ho xea 

The condition of  impermeability v n = 0 on the walls gives 

F 1 
z~Co , - z~/;o. - ( o  e ;  - o r  + 7(r  - o p.) + ~(x ,y l )  = o ,  

1 
F t = F=(x ,y ,Hor) ,  F = H ~  D(x ,y ,a)da.  

(27) 
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Subtracting Eq. (27) with minus superscripts from the same equation with plus superscripts, we obtain 

We find from Eq. (28) that 

2(o% - o v,,) + ~-(o p, - O p x) = o, 

• ~=F~-F-=H~ 
(28) 

0 = 0(p,p2). 

It the gas flow takes place in the direction perpendicular to the magnetic field, the 0 = 0(r and p = p(r and motion will 

occur along the surface ~b(x, y) = const - which in the given case are isochores. The pressure distribution can be bound by 

the method described in [2]. 

The results obtained here are also valid for liquids, but in this case Ohm's law will have the form 

[ ( v )  
j = a  grad~o + -  x H - a g r a d  - y(j x H). 

c 

As an example, let us examine the case of plane flows of a nonuniform liquid and walls of arbitrary conductivity. 

For plane flows of  a nonuniform liquid with dp/dt = 0 in a constant magnetic field t I  = Hoe z perpendicular to the 

plane of the flow (• y), where ~ = ~(x, y), p = O(x, y), T = T(x, y), p = p(x, y), we obtain the following from Eq. (I0) 

a t x  = 0  
2 

~ = - ~ A p  = 0. 

We then find from this equation that the pressure distribution satisfies the Laplace equation 

P= + Pyr = Ap = 0, (29) 

i.e., we will assume that pressure p can be found from Eq. (29) and we will take p to be a known function. 

We now introduced the stream function/3 for the pressure gradient so that 

aH 

Thus, the components of  velocity take the form 

c c 
(30) 

We designate e = ~o - ,~T - 3,(c/tr) p +/3.  Using the condition of impermeability of  the boundaries v n = Vxf x + Vyfy, we 

find that e = e(f), i.e., the velocity vector always coincides in terms of direction with the tangent to the curve f(x, y) = const. 

We fred from the equation d ' /dt  = 0 that density is constant along the lines f = const, i.e., p = p(f). This means that arbitrary 

plane flows of  a nonuniform conducting liquid in strong magnetic fields have the following properties: 
1) the pressure distribution satisfies the Laplace equation Ap = 0; 

2) flow of the liquid always occurs along the lines f = const and is determined by the stream function 

r 

e = ~o- aT-y~ap +fl; 
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3) the density of  the liquid is constant along the lines f = const, i.e., p = p(f). 

Knowing the pressure distribution, we can find the current density. From the condition v n = 0 we have 

C C 

r 

o/ - = + P/x)" 

Using the equality dO/dl = ( 0 y f  x - 0xfy  ) 1/x/'fx 2 + fy2, where l is a length reckoned along the curve f = const, we obtain 

c 1 
o : + 

Thus, the velocity of the liquid is determined from system (30). 

In the examples examined earlier, the geometric structure of the flow was explicitly dependent on the folan of  the 

bounding surface z = +f(x,  y), i.e., we obtained a flow with a stable, organized structure that could be controlled. Such flows 

have the form of a steady vortex with streamlines f = const. Thus, we have a new direction in continuum mechanics - the 

controlled organization of  flow structures with external fields and specially chosen bounding surfaces. 

Instead of  the static confinement of a partially ionized gas in strong magnetic fields with allowance for the Hall effect 
and heat flow, we can examine the problem of organizing slow, controlled steady motions of a plasma within a closed volume, 

i.e., we can impart a certain rotation mechanism to a gas along specified lines f = const and prevent it from dispersing. 

As regards flows of  liquid metals, the results obtained here may fred application in fusion-reactor cooling systems, as 

well as in the production of  tritium during neutron bottombardment in various controlled fusion reactors in which heat flow 

and the Hall effect are significant (an example would be the blanket of the Mark-IIA reactor at the Kalemsk laboratory). 
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